Fine thermotactic discrimination between the optimal and slightly cooler temperatures via a TRPV channel in chordotonal neurons.
نویسندگان
چکیده
Animals select their optimal environmental temperature, even when faced with alternatives that differ only slightly. This behavior is critical as small differences in temperature of only several degrees can have a profound effect on the survival and rate of development of poikilothermic animals, such as the fruit fly. Here, we demonstrate that Drosophila larvae choose their preferred temperature of 17.5 degrees C over slightly cooler temperatures (14-16 degrees C) through activation of chordotonal neurons. Mutations affecting a transient receptor potential (TRP) vanilloid channel, Inactive (Iav), which is expressed specifically in chordotonal neurons, eliminated the ability to choose 17.5 degrees C over 14-16 degrees C. The impairment in selecting 17.5 degrees C resulted from absence of an avoidance response, which is normally mediated by an increase in turns at the lower temperatures. We conclude that the decision to select the preferred over slightly cooler temperatures requires iav and is achieved by activating chordotonal neurons, which in turn induces repulsive behaviors, due to an increase in high angle turns.
منابع مشابه
Drosophila TRPN( = NOMPC) Channel Localizes to the Distal End of Mechanosensory Cilia
BACKGROUND A TRPN channel protein is essential for sensory transduction in insect mechanosensory neurons and in vertebrate hair cells. The Drosophila TRPN homolog, NOMPC, is required to generate mechanoreceptor potentials and currents in tactile bristles. NOMPC is also required, together with a TRPV channel, for transduction by chordotonal neurons of the fly's antennal ear, but the TRPN or TRPV...
متن کاملDispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model
Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...
متن کاملAn olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior.
Caenorhabditis elegans navigates thermal gradients by using a behavioral strategy that is regulated by a memory of its cultivation temperature (T(c)). At temperatures above or around the T(c), animals respond to temperature changes by modulating the rate of stochastic reorientation events. The bilateral AFD neurons have been implicated as thermosensory neurons, but additional thermosensory neur...
متن کاملDrosophila Trpal Controls Thennotactic Behavior
Temperature perception is an intricate process, essential for survival of many organisms. Temperatures far outside of the preferred range are usually harmful and are perceived as noxious (or painful), thus encouraging the animal to change its location or behavior. However, animals also have mechanisms to perceive more moderate, innocuous temperatures. Some animals exhibit clear directed movemen...
متن کاملAn IFT-A Protein Is Required to Delimit Functionally Distinct Zones in Mechanosensory Cilia
BACKGROUND Conserved intraflagellar transport (IFT) particle proteins and IFT-associated motors are needed to assemble most eukaryotic cilia and flagella. Proteins in an IFT-A subcomplex are generally required for dynein-driven retrograde IFT, from the ciliary tip to the base. We describe novel structural and functional roles for IFT-A proteins in chordotonal organs, insect mechanosensory organ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 31 شماره
صفحات -
تاریخ انتشار 2010